Part Number Hot Search : 
DEJF3E 0J101 74HC02 16384 SCB2673 5X5R1 74LV109 0J101
Product Description
Full Text Search
 

To Download UPC3220GR-APBD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  upc3220gr nec's low distortion down-converter ic for digital catv california eastern laboratories ? low distortion: iip 3 = +1.0 dbm t yp. ? wide agc dynamic range : gcr total = 45.5 db typ. ? on chip video amplifier ? supply voltage: 5 v ? packaged in a 16-pin ssop suitable for high- density surface mounting features data sheet nec's upc3220gr is a silicon monolithic ic de - signed for use as if down-converter for digital catv. this ic consists of agc ampli?er, mixer and video ampli?er. nec's upc3220gr is packaged in a 16-pin ssop (shrink small outline package) suitable for surface mount. this ic is manufactured using our 10 ghz f t nesat ii al silicon bipolar process. this process uses silicon nitride passivation ?lm. this material can protect chip surface from external pol - lution and prevent corrosion/migration. thus, this ic has excellent performance, uniformly and reliability. description ? digital catv rec eivers application ordering information part number order number package marking supplying form upc3220gr-e1-a upc3220gr-e1-a 16-pin plastic ssop (5.72 mm (225)) (pb-free) note c3220 ? embossed tape 12 mm wide ? pin 1 indicates pull-out direction of tape ? qty 2.5 kpcs/reel note with regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact your nearby sales of?ce. remark to order evaluation samples, contact your nearby sales of?ce. part number for sample order: pc3220gr caution observe precautions when hand ling beca use these devices are sensitive to electro static discharge.
upc3220gr internal block diagram and pin configuration (t op v iew) 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 rf in1 rf in2 v agc gnd osc in1 osc in2 v cc 1 v cc 2 gnd mix out2 mix out1 amp in1 amp in2 gnd amp out1 amp out2 vi deo amp. agc amp. mixer osc out buf fer amp.
upc3220gr pin explanations pin no. symbol pin voltage (v, typ.) explanation equivalent circuit 1 rf in1 1.46 input pin of if signal. 1-pin is same phase and 2-pin is opposite phase at balance input. in case of single input, 1-pin or 2-pin should be grounded through capacitor (example 10 nf). agc control 7 1 2 2 rf in2 1.46 3 v agc 0 to 3.5 automatic gain control pin. this pins bias govern the agc output level. minimum gain at v agc = 0 v maximum gain at v agc = 3.5 v 7 3 agc control 4 gnd 0.0 ground pin. must be connected to the system ground with minimum inductance. ground pattern on the board should be formed as wide as possible. CCCCCC 5 osc in1 2.6 input pin of oscillator signal. 5-pin is same phase and 6-pin is opposite phase at balance input. in case of single input, 5-pin or 6-pin should be grounded through capacitor (ex. 10 nf). 7 5 6 6 osc in2 2.6 7 v cc1 5.0 power supply pin of if down convertor block. must be connected bypass capacitor to minimize ground impedance. CCCCCC 8 v cc2 5.0 power supply pin of video ampli?er. must be connected bypass capacitor to minimize ground impedance. CCCCCC
upc3220gr pin no. symbol pin voltage (v, typ.) explanation equivalent circuit 9 amp out2 2.5 output pin of video ampli?er. out1 and in1 are same phase. out2 and in2 are same phase. 8 9 10 10 amp out1 2.5 11 gnd 0.0 ground pin. must be connected to the system ground with minimum inductance. ground pattern on the board should be formed as wide as possible. CCCCCC 12 amp in2 1.45 signal input pin of video ampli?er. this pin is high impedance. 8 12 13 13 amp in1 1.45 14 gnd 0.0 ground pin. must be connected to the system ground with minimum inductance. ground pattern on the board should be formed as wide as possible. CCCCCC 15 mix out1 3.7 output pin of mixer. this output pin features low-impedance because of its emitter-follower output port. 7 15 16 16 mix out2 3.7
upc3220gr absolute maximum ratings parameter symbol conditions ratings unit supply voltage v cc t a = +25 c 6.0 v power dissipation p d t a = +85 c note 433 mw operating ambient temperature t a ? 40 to +85 c storage temperature t stg ? 55 to +150 c recommended operating range parameter symbol conditions min. typ. max. unit supply voltage v cc 4.5 5.0 5.5 v operating ambient temperature t a v cc = 4.5 to 5.5 v ? 40 +25 +85 c gain control voltage range v agc 0 ? v cc v note mounted on double-sided copper-clad 50 x 50 x 1.6 mm epoxy glass pwb
upc3220gr electrical characteristics ( t a = + 25oc, v cc = 5 v ) parameter symbol test conditions min. typ. max. unit dc characteristics circuit current 1 (total block) i cc 1 no input signal, v cc 1 = v cc 2 = 5 v note 4 33.0 42.0 53.5 ma circuit current 2 (agc ampli?er block + mixer block) i cc 2 no input signal, v cc 1 = 5 v note 4 15.0 20.0 25.5 ma circuit current 3 (video ampli?er block) i cc 3 no input signal, v cc 2 = 5 v note 4 18.0 22.0 28.0 ma agc voltage high level v agc (h) @ maximum gain note 1 3.0 ? v cc v agc voltage low level v agc (l) @ minimum gain note 1 0 ? 0.5 v rf characteristics (agc ampli?er block + mixer block: f rf = 84 mhz, f lo = 134 mhz, p lo = ? 15 dbm, f if = 50 mhz, z s = 50 , z l = 1 k ) rf input frequency range f rf f if = 50 mhz constant note 1 30 ? 250 mhz if output frequency range f if f rf = 84 mhz constant note 1 0.1 ? 150 mhz maximum conversion gain cg max v agc = 3.0 v, p in = ? 50 dbm note 1 30.5 33.0 35.5 db minimum conversion gain cg min v agc = 0.5 v, p in = ? 20 dbm note 1 ? 18.0 ? 12.5 ? 3.5 db agc dynamic range gcr agc v agc = 0.5 to 3.0 v note 1 36.0 45.5 ? db noise figure nf dsb, v agc = 3.0 v (@ maximum gain) note 2 ? 7.0 8.5 db 3rd order intermodulaion distortion im 3 v out = 0.236 v p-p 2 tone, (single-ended output), p in ? 30 dbm/tone f rf1 = 84 mhz, f rf2 = 85 mhz note 1 24.0 26.5 ? dbc rf characteristics (video ampli?er block: f = 50 mhz, z s = 50 , z l = 1 k ) differential gain g diff p in = ? 55 dbm note 3 48.0 50.5 53.5 db maximum output voltage 2 v oclip2 p in = ? 25 dbm note 3 2.95 3.70 ? v p-p notes 1. by measurement circuit 1 2. by measurement circuit 2 3. by measurement circuit 4 4. by measurement circuit 6
upc3220gr remark the graphs indicate nominal characteristics. standard characteristics ( t a = + 25oc, v cc = 5 v, z s = 50 ) parameter symbol test conditions reference value unit agc ampli?er block + mixer block (f rf = 84 mhz, f lo = 134 mhz, p lo = ? 15 dbm, f if = 50 mhz, z s = 50 , z l = 1 k ) input 3rd order distortion intercept point iip 3 v agc = 0.5 v (@ minimum gain) f rf1 = 84 mhz, f rf2 = 85 mhz note 1 +1.0 dbm maximum output voltage1 v oclip1 v agc = 3.0 v, p in = ? 20 dbm note 1 0.65 v p-p rf in impedance z rfin v agc = 3.0 v, f = 84 mhz note 2 440 ? j1100 osc in impedance z oscin v agc = 3.0 v, f = 134 mhz note 2 280 ? j810 mixer out impedance z mixout v agc = 3.0 v, f = 50 mhz note 2 30.2 + j2.5 video ampli?er block (f = 50 mhz, z s = 50 , z l = 1 k ) frequency range f bw p in = ? 55 dbm, g (f = 10 mhz) ? 1 db note 3 60 mhz input impedance z ampin f = 50 mhz note 4 330 ? j480 output impedance z ampout f = 50 mhz note 4 21.9 + j22.6 3rd order intermodulaion distortion im 3 v out = 0.7 v p-p 2 tone, f in1 = 49 mhz, f in2 = 50 mhz note 3 55.0 dbc total block (f rf = 84 mhz, f lo = 134 mhz, p lo = ? 15 dbm, f if = 50 mhz, z s = 50 , z l = 1 k ) maximum conversion gain cg max v agc = 3.0 v, p in = ? 70 dbm note 5 67.5 db minimum conversion gain cg min v agc = 0.5 v, p in = ? 40 dbm note 5 22.0 db total dynamic range gcr v agc = 0.5 to 3.0 v note 5 45.5 db noise figure nf dsb, v agc = 3.0 v (@ maximum gain) note 6 7.0 db maximum output voltage v oclip v agc = 3.0 v (@ minimum gain) note 5 3.7 v p-p input 3rd order distortion intercept point iip 3total v agc = 0.5 v (@ minimum gain) f rf1 = 84 mhz, f rf2 = 85 mhz note 5 +1.0 dbm 3rd order intermodulaion distortion im 3total v out = 0.7 v p-p 2 tone, p in ? 40 dbm/tone f rf1 = 84 mhz, f rf2 = 85 mhz note 5 51.0 dbc notes 1. by measurement circuit 1 2. by measurement circuit 3 3. by measurement circuit 4 4. by measurement circuit 5 5. by measurement circuit 6 6. by measurement circuit 7
upc3220gr measurement circuit 1 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 note spectrum analyzer 50 ? 51 ? 1 k ? 50 ? 50 ? rf1 lo v ag c v cc 1 rf2 50 ? 1 f 1 f 1 k ? 1 f 1 f 0.1 f 0.1 f//20 pf 0.1 f 0.1 f 0.1 f 0.1 f vi deo amp. agc amp. mixer osc ou t buff er amp . if measurement circuit 2 note balun transformer : toko 617db-1010 b4f (double balanced type) note balun transformer : toko 617db-1010 b4f (double balanced type) 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 note 51 ? 1 k ? 50 ? lo rf v agc v cc 1 1 f 1 f 1 k ? 1 f 1 f 0.1 f 0.1 f//20 pf 0.1 f 0.1 f 50 ? noise source 0.1 f noise figure meter v ideo amp . agc amp. mixer osc ou t buf fer amp . 0.1 f if
upc3220gr measurement circuit 3 measurement circuit 4 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 51 ? lo rf if v agc v cc 1 1 f 1 f 1 f 1 f 0.1 f 0.1 f//20 pf 0.1 f 0.1 f 50 ? 50 ? lo port input impedance if port input impedance rf port input impedance network analyzer 0.1 f 0.1 f v ideo amp. agc amp. mixer osc ou t buf fer amp . 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 v cc 2 1 f 1 f 1 f 1 f 1 f 50 ? 51 ? 1 k ? 1 k ? 51 ? 50 ? 51 ? 51 ? spectrum analyzer vi n v out vout 0.1 f v ideo amp. agc amp. mixer osc out buf fer amp. remarks 1. voltage gain (single ended) = 20 log (vout/vin) (db) 2. differential gain (differential-out) = 20 log (2 vout/vin) (db) 3. vout = vout (measured value) (1 050/50)
measurement circuit 5 measurement circuit 6 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 v cc 2 1 f 1 f 1 f 1 f 1 f 50 ? 50 ? 51 ? 51 ? 0.1 f vi deo amp. agc amp. mixer osc out buf fer amp. output impedance input impedance network analyzer 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 note spectrum analyzer 50 ? 51 ? 1 k ? 1 k ? 1 k ? 50 ? 50 ? rf lo v ag c v cc 1 1 f 1 f 1 f 1 f 1 k ? 1 f 1 f 0.1 f v cc 2 1 f 0.1 f 0.1 f 0.1 f//20 pf 0.1 f 0.1 f loss 10 db @50 mh z 0.1 f vi deo amp. agc amp. mixer osc ou t buff er amp . note balun transformer : toko 617db-1010 b4f (double balanced type) upc3220gr upc3220gr
measurement circuit 7 upc3220gr upc3220gr 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 note 51 ? 1 k ? 1 k ? 1 k ? 50 ? lo v agc v cc 1 1 f 1 f 1 f 1 f 1 k ? 1 f 1 f 0.1 f v cc 2 1 f 0.1 f 0.1 f//20 pf 0.1 f 0.1 f rf 0.1 f 50 ? noise figure meter noise source 0.1 f v ideo amp . agc amp. mixer osc ou t buf fer amp . note balun transformer : toko 617db-1010 b4f (double balanced type) the application circuits and their parameters are for reference only and are not intended for use in actual design-ins.
upc3220gr illustration of the measurement circuit1, 2 assembled on evaluation board pc3220gr note 1 k ? 1 k ? 51 ? 1 f 0.1 f 0.1 f 20 pf 0.1 f 1 f 0.1 f 1 f 0.1 f v agc lo in rf1, rf2 in if out v cc 1 (agc + mix) remarks 1. back side: gnd pattern 2. solder plated on pattern 3. : through hole 4 . : represents cutout note balun transformer
upc3220gr illustration of the measurement circuit3 assembled on evaluation board pc3220gr 51 ? 1 f 0.1 f 0.1 f 20 pf 0.1 f 1 f 0.1 f 1 f 0.1 f v agc lo in rf in if out v cc 1 (agc + mix) 1 f remarks 1. back side: gnd pattern 2. solder plated on pattern 3. : through hole 4 . : represents cutout 5 . : represents short-circuit strip
upc3220gr illustration of the measurement circuit4 assembled on evaluation board pc3220gr 1 k ? 1 f 1 f 1 k ? 1 f 1 f 51 ? 0.1 f 1 f v cc 2 (v ideo) vo ut vi n 51 ? remarks 1. back side: gnd pattern 2. solder plated on pattern 3. : through hole 4 . : represents short-circuit strip
upc3220gr illustration of the measurement circuit5 assembled on evaluation board pc3220gr 1 f 1 f 1 f 1 f 0.1 f 1 f v cc 2 (v ideo) input impedance output impedance 51 ? 51 ? remarks 1. back side: gnd pattern 2. solder plated on pattern 3. : through hole 4 . : represents short-circuit strip
upc3220gr illustration of the measurement circuit6, 7 assembled on evaluation board pc3220gr note 1 k ? 1 f 1 f 1 k ? 1 f 1 f 1 k ? 0.1 f 0.1 f 20 pf 0.1 f 1 f 0.1 f 1 f 0.1 f 1 f v agc v cc 1 (vgc + mix) v cc 2 (v ideo) vo ut lo in rf in 51 ? remarks 1. back side: gnd pattern 2. solder plated on pattern 3. : through hole 4 . : represents cutout 5 . : represents short-circuit strip note balun transformer
upc3220gr typical characteristics ( t a = +25oc, unless otherwise speci?ed) circuit current1 (t ot al block) vs. suppl y vol t age circuit current1 (t otal block) i cc 1 (ma) 60 50 40 30 20 10 0 supply v oltage v cc 1, 2 (v) 0 1 2 3 4 5 6 v agc = 0 v no singnal measurement cuicuit6 t a = -40 c t a = +25 c t a = +85 c circuit current2 (agc amplifier + mixer block) vs. suppl y volt age circuit current2 (agc amplifier + mixer block) i cc 2 (ma) 30 25 20 15 10 5 0 supply v oltage v cc 1 (v) 0 1 2 3 4 5 6 t a = -40 c t a = +85 c t a = +25 c circuit current3 (video amplifier block) vs. suppl y volt age circuit current3 (v ideo amplifier block) i cc 3 (ma) 30 25 20 15 10 5 0 supply v oltage v cc 2 (v) 0 1 2 3 4 5 6 t a = -40 c t a = +85 c t a = +25 c v cc 2 = v agc = 0 v no singnal measurement cuicuit6 v cc 1 = v agc = 0 v no singnal measurement cuicuit6 remark the graphs indicate nominal characteristics.
upc3220gr volt age gain vs. rf input frequency range vo ltage gain (db) 35 30 25 20 15 10 5 0 -5 -10 -15 -20 rf input frequency range f rf (mhz) 0 5 0 100 150 200 250 t a = -40 c t a = +85 c t a = +25 c volt age gain vs. rf input frequency range vo ltage gain (db) 40 35 30 25 20 15 10 5 0 -5 -10 -15 rf input frequency range f rf (mhz) 0 5 0 100 150 200 250 v cc 1 = 5.5 v 5.0 v 4.5 v volt age gain vs. rf input frequency range vo ltage gain (db) 40 35 30 25 20 15 10 5 0 -5 -10 -15 rf input frequency range f rf (mhz) 0 5 0 100 150 200 250 v cc 1 = 5.5 v 5.0 v 4.5 v v agc = 1.5 v p in = -50 dbm f lo = 60 to 290 mhz p lo = -15 dbm f if = 50 mhz measurement cuicuit1 v agc = 3.0 v p in = -50 dbm f lo = 60 to 290 mhz p lo =-15 dbm f if = 50 mhz measurement cuicuit1 v agc = 1.5 v v cc = 5.0 v p in = -50 dbm f lo = 60 to 290 mhz p lo = -15 dbm f if = 50 mhz measurement cuicuit1 volt age gain vs. rf input frequency range vo ltage gain (db) 40 35 30 25 20 15 10 5 0 -5 -10 -15 rf input frequency range f rf (mhz) 0 5 0 100 150 200 250 v agc = 0.5 v p in = -20 dbm f lo = 60 to 290 mhz p lo = -15 dbm f if = 50 mhz measurement cuicuit1 v cc 1 = 4.5 v 5.0 v 5.5 v vol t age gain vs. rf input frequency range vo ltage gain (db) 35 30 25 20 15 10 5 0 -5 -1 0 -1 5 -2 0 rf input frequency range f rf (mhz) 0 5 0 100 150 200 250 t a = -40 c t a = +85 c t a = +25 c v agc = 3.0 v v cc = 5.0 v p in = -50 dbm f lo = 60 to 290 mhz p lo = -15 dbm f if = 50 mhz measurement cuicuit1 vol t age gain vs. rf input frequency range vo ltage gain (db) 35 30 25 20 15 10 5 0 -5 -1 0 -1 5 -2 0 rf input frequency range f rf (mhz) 0 5 0 100 150 200 250 t a = -40 c t a = +85 c t a = +25 c v agc = 0.5 v v cc = 5.0 v p in = -20 dbm f lo = 60 to 290 mhz p lo = -15 dbm f if = 50 mhz measurement cuicuit1 remark the graphs indicate nominal characteristics.
upc3220gr volt age gain vs. if output frequency range vo ltage gain (db) 35 30 25 20 15 10 5 0 -5 -10 -15 -20 if output frequency range f if (mhz) 0 2 0 6 0 80 140 160 volt age gain vs. if output frequency range vo ltage gain (db) 35 30 25 20 15 10 5 0 -5 -10 -15 -20 if output frequency range f if (mhz) 0 2 0 4 0 100 140 160 t a = +25 c volt age gain vs. if output frequency range vo ltage gain (db) 35 30 25 20 15 10 5 0 -5 -10 -15 -20 if output frequency range f if (mhz) 0 20 6 0 120 140 160 120 60 80 t a = -40 c 100 80 40 t a = -40 c t a = +25 c t a = +85 c t a = +85 c 40 100 120 t a = +85 c t a = +25 c t a = -40 c volt age gain vs. if output frequency range vo ltage gain (db) 40 35 30 25 20 15 10 5 0 -5 -10 -15 if output frequency range f if (mhz) 0 20 6 0 100 140 160 40 80 120 v cc 1 = 5.5 v 5.0 v 4.5 v volt age gain vs. if output frequency range vo ltage gain (db) 40 35 30 25 20 15 10 5 0 -5 -10 -15 if output frequency range f if (mhz) 0 20 6 0 100 140 160 40 80 120 v cc 1 = 4.5 v 5.0 v 5.5 v volt age gain vs. if output frequency range vo ltage gain (db) 40 35 30 25 20 15 10 5 0 -5 -10 -15 if output frequency range f if (mhz) 0 20 6 0 100 140 160 40 80 120 v cc 1 = 4.5 v 5.0 v 5.5 v v agc = 0.5 v p in = -20 dbm f lo = 94 to 234 mhz p lo = -15 dbm f rf = 84 mhz measurement cuicuit1 v agc = 1.5 v p in = -50 dbm f lo = 94 to 234 mhz p lo = -15 dbm f rf = 84 mhz measurement cuicuit1 v agc = 3.0 v p in = -50 dbm f lo = 94 to 234 mhz p lo = -15 dbm f rf = 84 mhz measurement cuicuit1 v agc = 0.5 v v cc 1 = 5.0 v p in = -20 dbm f lo = 94 to 234 mhz p lo = -15 dbm f rf = 84 mhz measurement cuicuit1 v agc = 1.5 v v cc 1 = 5.0 v p in = -50 dbm f lo = 94 to 234 mhz p lo = -15 dbm f rf = 84 mhz measurement cuicuit1 v agc = 3.0 v v cc 1 = 5.0 v p in = -50 dbm f lo = 94 to 234 mhz p lo = -15 dbm f rf = 84 mhz measurement cuicuit1 remark the graphs indicate nominal characteristics.
upc3220gr volt age gain vs. gain control vol ta ge range vo ltage gain (db) 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 gain control v oltage range v agc (v) 0 0.5 1.5 3.0 3.5 f rf = 84 mhz p in = -50 dbm f lo = 134 mhz p lo = -15 dbm f if = 50 mhz measurement cuicuit1 1.0 2.0 2.5 v cc 1 = 4.5 v 5.0 v 5.5 v vol t age gain vs. gain control vol ta ge range vo ltage gain (db) 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 gain control v oltage range v agc (v) 0 0.5 1.5 3.0 3.5 1.0 2.0 2.5 t a = -40 c +25 c +85 c noise figure vs. gain control vol ta ge range noise figure nf (db) gain control v oltage range v agc (v) 35 30 25 20 15 10 5 0 1.0 1.5 3.0 3.5 2.0 2.5 v cc 1 = 5.5 v 5.0 v 4.5 v f lo = 134 mhz p lo = -15 dbm f if = 50 mhz measurement cuicuit2 noise figure vs. gain control vol ta ge range noise figure nf (db) gain control v oltage range v agc (v) 35 30 25 20 15 10 5 0 1.0 1.5 3.0 3.5 2.0 2.5 t a = +85 c +25 c -40 c v cc 1 = 5.0 v f rf = 84 mhz p in = -50 dbm f lo = 134 mhz p lo = -15 dbm f if = 50 mhz measurement cuicuit1 v cc 1 = 5.0 v f lo = 134 mhz p lo = -15 dbm f if = 50 mhz measurement cuicuit2 remark the graphs indicate nominal characteristics.
upc3220gr output power vs. input power output power p out (50 ? /1 050 ? ) (dbm) -1 5 -2 0 -2 5 -3 0 -3 5 -4 0 -4 5 -50 -55 input power p in (dbm) -55 -50 -4 0 -20 - 15 -4 5 -3 0 -2 5 v cc 1 = 5.5 v 5.0 v 4.5 v 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) -2 0 -3 0 -4 0 -50 -6 0 -7 0 -8 0 -9 0 -100 -60 -50 -20 -4 0 -3 0 v agc = 3.0 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz measurement cuicuit1 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) -3 5 output power vs. input power output power p out (50 ? /1 050 ? ) (dbm) -1 5 -2 0 -2 5 -3 0 -3 5 -4 0 -4 5 -50 -55 input power p in (dbm) -55 -50 -40 - 20 -1 5 -4 5 -3 0 -2 5 t a = +2 5 c -3 5 -4 0 c +8 5 c v agc = 3.0 v f rf = 84 mhz f lo = 134 mhz p lo = -15 dbm f if = 50 mhz measurement cuicuit 1 v cc 1 = 4.5 v 5.0 v 5.5 v -2 0 -3 0 -4 0 -50 -6 0 -7 0 -8 0 -9 0 -100 -60 -50 -2 0 -4 0 -3 0 t a = -4 0 c +2 5 c +8 5 c 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) -2 0 -3 0 -4 0 -50 -6 0 -7 0 -8 0 -9 0 -100 -50 -40 - 10 -3 0 -2 0 v agc = 2.1 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz measurement cuicuit1 v cc 1 = 4.5 v 5.0 v 5.5 v 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -100 -50 -40 - 10 -30 -2 0 v cc 1 = 5.0 v v agc = 3.0 v f rf = 84 mhz f lo = 134 mhz p lo = -15 dbm f if = 50 mhz measurement cuicuit1 v cc 1 = 5.0 v v agc = 3.0 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz measurement cuicuit1 t a = -4 0 c +2 5 c +8 5 c v cc 1 = 5.0 v v agc = 2.1 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz measurement cuicuit1 remark the graphs indicate nominal characteristics.
upc3220gr 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) -20 -3 0 -4 0 -50 -6 0 -7 0 -8 0 -9 0 -100 -30 -20 10 -1 0 0 v agc = 0.5 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz measurement cuicuit1 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) v cc 1 = 4.5 v 5.0 v 5.5 v -20 -3 0 -4 0 -50 -6 0 -7 0 -8 0 -9 0 -100 -30 -20 10 -1 0 0 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) -20 -3 0 -4 0 -50 -6 0 -7 0 -8 0 -9 0 -100 -30 -20 10 -1 0 0 v agc = 1.5 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz measurement cuicuit1 v cc 1 = 4.5 v 5.0 v 5.5 v 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) -20 -3 0 -4 0 -50 -6 0 -7 0 -8 0 -9 0 -100 -30 -20 10 -1 0 0 t a = -4 0 c +25 c +8 5 c v cc 1 = 5.0 v v agc = 1.5 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz measurement cuicuit 1 t a = -4 0 c +25 c +8 5 c v cc 1 = 5.0 v v agc = 0.5 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz measurement cuicuit 1 remark the graphs indicate nominal characteristics.
upc3220gr volt age gain (single-ended) vs. input frequency vo ltage gain (single-ended) (db) input frequency f in (mhz) 50 49 48 47 46 45 44 43 42 41 40 10 100 50 v cc 2 = 4.5 v 5.0 v 5.5 v volt age gain (single-ended) vs. input frequency vo ltage gain (single-ended) (db) input frequency f in (mhz) 50 49 48 47 46 45 44 43 42 41 40 10 100 50 t a = -40 c +25 c +85 c v cc 2 = 5 v p in = -55 dbm m easurement cuicuit4 output power vs. input power output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) 0 -5 -10 -15 -20 -25 -30 -35 -40 -50 -45 -15 -25 -20 f if = 50 mhz m easurement cuicuit4 v cc 2 = 4.5 v 5.0 v 5.5 v -40 -35 -30 output power vs. input power output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) 0 -5 -10 -15 -20 -25 -30 -35 -40 -50 -45 -15 -25 -20 v cc 2 = 5 v f if = 50 mhz m easurement cuicuit4 t a = -40 c +25 c +85 c -40 -35 -30 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -60 -20 -30 f if 1 = 50 mhz f if 2 = 49 mhz m easurement cuicuit4 v cc 2 = 4.5 v 5.0 v 5.5 v -50 -40 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -60 -20 -30 v cc 2 = 5 v f if 1 = 50 mhz f if 2 = 49 mhz m easurement cuicuit4 t a = -40 c +25 c +85 c -50 -40 p in = -55 dbm m easurement cuicuit4 remark the graphs indicate nominal characteristics. Cvideo ampli?er blockC
upc3220gr volt age gain vs. rf input frequency range voltage gain (db) rf input frequency range f rf (mhz) 80 70 60 50 40 30 20 10 0 0 250 50 v cc 1, 2 = 4.5 v 5.0 v 5.5 v 100 150 200 volt age gain vs. rf input frequency range voltage gain (db) rf input frequency range f rf (mhz) 80 70 60 50 40 30 20 10 0 0 250 50 t a = -40 c +25 c +85 c 100 150 200 v cc 1, 2 = 5 v f lo = 60 to 290 mhz v agc = 3.0 v ( p in = - 70 dbm ) v agc = 1.5 v ( p in = - 40 dbm ) v agc = 0.5 v ( p in = - 40 dbm ) v agc = 3.0 v ( p in = -70 dbm ) v agc = 1.5 v ( p in = -40 dbm ) v agc = 0.5 v ( p in = -40 dbm ) volt age gain vs. if output frequency range vo ltage gain (db) if output frequency range f if (mhz) 80 70 60 50 40 30 20 10 0 160 20 v cc 1, 2 = 4.5 v 5.0 v 5.5 v 100 120 140 volt age gain vs. if output frequency range vo ltage gain (db) if output frequency range f if (mhz) 80 70 60 50 40 30 20 10 0 0 160 20 t a = -40 c +25 c +85 c 60 100 140 v cc 1, 2 = 5 v f lo = 94 to 234 mhz p lo = -15 dbm f rf = 84 mhz v agc = 3.0 v ( p in = -70 dbm ) v agc = 1.5 v ( p in = ?40 dbm ) v agc = 0.5 v ( p in = -40 dbm ) v agc = 3.0 v ( p in = -70 dbm ) v agc = 1.5 v ( p in = -40 dbm ) v agc = 0.5 v ( p in = -40 dbm ) 40 60 80 volt age gain vs. gain control volta ge range vo ltage gain (db) 75 70 65 60 55 50 45 40 35 30 25 20 gain control v oltage range v agc (v) 0 0.5 1.5 3.0 3.5 f rf = 84 mhz p in = -70 dbm f lo = 134 mhz p lo = -15 dbm measurement cuicuit6 1.0 2.0 2.5 v cc 1, 2 = 4.5 v 5.0 v 5.5 v vo ltage gain (db) 70 65 60 55 50 45 40 35 30 25 20 15 gain control v oltage range v agc (v) 0 0.5 1.5 3.0 3.5 v cc 1, 2 = 5 v f rf = 84 mhz p in = -70 dbm f lo = 134 mhz p lo = -15 dbm measurement cuicuit6 1.0 2.0 2.5 t a = -40 c +25 c +85 c 40 80 120 f lo = 60 to 290 mhz p lo = -15 dbm f if = 50 mhz measurement cuicuit6 p lo = -15 dbm f if = 50 mhz measurement cuicuit6 f lo = 94 to 234 mhz p lo = -15 dbm f rf = 84 mhz measurement cuicuit6 measurement cuicuit6 volt age gain vs. gain control volta ge range remark the graphs indicate nominal characteristics. Ctotal blockC
upc3220gr noise figure vs. gain control vol ta ge range noise figure nf (db) 35 30 25 20 15 10 5 0 gain control v oltage range v agc (v) 1.0 1.5 3.0 3.5 f if = 50 mhz f lo = 134 mhz p lo = -15 dbm measurement cuicuit7 2.0 2.5 v cc 1, 2 = 4.5 v 5.0 v 5.5 v noise figure vs. gain control vol ta ge range noise figure nf (db) 35 30 25 20 15 10 5 0 gain control v oltage range v agc (v) 1.0 1.5 3.0 3.5 v cc 1, 2 = 5 v f if = 50 mhz f lo = 134 mhz p lo = ?15 dbm measurement cuicuit7 2.0 2.5 t a = -40 c +25 c +85 c output power vs. input power output power p out (50 ? /1 050 ? ) (dbm) 0 -5 -10 -15 -20 -25 -30 -35 -40 input power p in (dbm) -75 -70 -6 0 -40 -35 -6 5 -50 -45 v cc 1, 2 = 5.5 v 5.0 v 4.5 v -55 v agc = 3.0 v f rf = 84 mhz f lo = 134 mhz p lo = -15 dbm f if = 50 mhz m easurement cuicuit 6 output power vs. input power output power p out (50 ? /1 050 ? ) (dbm) 0 -5 -10 -15 -20 -25 -30 -35 -40 input power p in (dbm) -75 -70 -60 -40 -35 -6 5 -50 -45 t a = +25 c -55 -40 c +85 c 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) 0 -10 -20 -30 -40 -50 -6 0 -70 -80 -80 -70 -40 -6 0 -50 v agc = 3.0 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz m easurement cuicuit 6 v cc 1, 2 = 4.5 v 5.0 v 5.5 v 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) 0 -10 -20 -30 -40 -50 -6 0 -70 -80 -80 -70 -40 -6 0 -50 v cc 1, 2 = 5.0 v v agc = 3.0 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz m easurement cuicuit 6 t a = -40 c +25 c +85 c v cc 1, 2 = 5.0 v v agc = 3.0 v f rf = 84 mhz f lo = 134 mhz p lo = -15 dbm f if = 50 mhz m easurement cuicuit 6 remark the graphs indicate nominal characteristics.
upc3220gr 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) 0 -1 0 -20 -3 0 -4 0 -50 -6 0 -7 0 -8 0 -50 -40 - 10 -3 0 -20 v agc = 1.5 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz measurement cuicuit6 v cc 1, 2 = 4.5 v 5.0 v 5.5 v 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) 0 -1 0 -20 -3 0 -4 0 -50 -6 0 -7 0 -8 0 -50 -40 - 10 -3 0 -20 v cc 1, 2 = 5 v v agc = 1.5 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz m easurement cuicuit6 t a = -4 0 c +2 5 c +8 5 c 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) 0 -1 0 -20 -3 0 -4 0 -50 -6 0 -7 0 -8 0 -35 -25 5 -1 5 -5 v agc = 0.5 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz measurement cuicuit6 v cc 1, 2 = 4.5 v 5.0 v 5.5 v 2 t one output power vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) 0 -10 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -35 -25 5 -15 -5 v cc 1, 2 = 5.0 v v agc = 0.5 v f rf 1 = 84 mhz f rf 2 = 85 mhz f lo = 134 mhz p lo = -15 dbm f if = 50, 49 mhz measurement cuicuit 6 t a = -4 0 c +25 c +8 5 c remark the graphs indicate nominal characteristics.
upc3220gr im 3 , 2 t one output power, gain control vol ta ge vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) -20 -30 -4 0 -50 -6 0 -7 0 -8 0 -9 0 -80 - 60 0 -4 0 -20 conditions f rf 1 = 84 mh z f rf 2 = 85 mhz f lo = 134 mh z p lo = -15 dbm f if = 50, 49 mh z @v out = 0.7 v p- p /tone measurement cuicuit6 v cc 1, 2 = 4.5 v 5.0 v 5.5 v gain control vo ltage range v agc (v ) -7 0 -50 -30 -1 0 4. 0 3.5 3.0 2.5 2.0 1. 5 1. 0 0.5 0 im 3 , 2 t one output power, gain control vol tage vs. input power 2 tone output power p out (50 ? /1 050 ? ) (dbm) input power p in (dbm) -20 -30 -4 0 -50 -6 0 -7 0 -8 0 -9 0 -80 - 60 0 -4 0 -20 t a = -4 0 c +25 c +8 5 c -7 0 -50 -30 -1 0 gain control v oltage range v agc (v ) 4. 0 3.5 3.0 2.5 2.0 1. 5 1. 0 0.5 0 v agc p out 3rd order intermoduration distortion im 3 (dbc) 3rd order intermoduration distortion im 3 (dbc) im 3 v agc p out im 3 conditions f rf 1 = 84 mh z f rf 2 = 85 mhz f lo = 134 mh z p lo = -15 dbm f if = 50, 49 mh z @v out = 0.7 v p- p /tone measurement cuicuit6 remark the graphs indicate nominal characteristics.
upc3220gr s-parameters Cagc ampli?er block + mixer block (v cc 1 = 5.0 v, v agc = 3.0 v, by measurement circuit 3) mixer rf input impedance 1 : 30 mhz 1.830 k ? -1.603 k ? 3.309 pf 2 : 84 mhz 443.0 ? -1.096 k ? 1.730 pf 3 : 150 mhz 207.4 ? - 728.7 ? 1.456 pf 4 : 250 mhz 109.7 ? - 454.1 ? 1.402 pf 3 2 1 4 mixer rf output impedance 1 : 10 mhz 29.48 ? 634.6 m ? 10.07 nh 2 : 36 mhz 29.98 ? 1.908 ? 8.431 nh 3 : 50 mhz 30.17 ? 2.476 ? 7 .884 nh 4 : 100 mhz 30.79 ? 4.171 ? 6.638 nh 3 2 1 4
upc3220gr mixer osc input impedance 1 : 30 mhz 1.820 k ? -1.823 k ? 2.91 1 pf 2 : 100 mhz 415.5 ? -1.010 ? 1.575 pf 3 : 134 mhz 284.6 ? -813.1 ? 1.461 pf 4 : 250 mhz 133.4 ? -487.0 ? 1.307 pf 3 2 1 4
upc3220gr Cvideo ampli?er block (v cc 2 = 5.0 v , by measurement circuit 5) video ampli?er input impedance 3 2 1 4 1 : 10 mhz 1.187 k ? -1.177 k ? 13.54 pf 2 : 36 mhz 389.8 ? -588.3 ? 7.516 pf 3 : 50 mhz 333.4 ? -481.1 ? 6.617 pf 4 : 100 mhz 245.5 ? -369.7 ? 4.304 pf video ampli?er output impedance 3 2 1 4 1 : 10 mhz 10.04 ? 5 .225 ? 8 3.16 nh 2 : 36 mhz 15.86 ? 17.70 ? 78.25 nh 3 : 50 mhz 21.54 ? 22.61 ? 7 1.96 nh 4 : 100 mhz 45.48 ? 23.89 ? 38.02 nh
upc3220gr package dimensions 16--pin plastic ssop ( 5.72 m m (225) ) ( unit: mm ) detail of lead end 5o 5o 16 9 1 8 5.20.3 6.40.2 4.40.2 0.50.2 1.00.2 0.17 +0.08 -0.0 7 0.10 s 1.8 max. 1.50.1 0.475 max. s 0.22 +0.10 -0.0 5 0.1250.075 0.10 m 0.65
upc3220gr notes on correct use (1) observe precautions for handling because of electro-static sensitive devices. (2) form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). all the ground pins must be connected together with wide ground pattern to decrease impedance dif ference. (3) the bypass capacitor should be attached to v cc line. recommended soldering conditions this product should be soldered and mounted under the following recommended conditions. for soldering methods and conditions other than those recommended below, contact your nearby sales of?ce. soldering method soldering conditions condition symbol infrared re?ow peak temperature (package surface temperature) : 260 c or below time at peak temperature : 10 seconds or less time at temperature of 220 c or higher : 60 seconds or less preheating time at 120 to 180 c : 120 30 seconds maximum number of re?ow processes : 3 times maximum chlorine content of rosin ?ux (% mass) : 0.2%(wt.) or below ir260 wave soldering peak temperature (molten solder temperature) : 260 c or below time at peak temperature : 10 seconds or less preheating temperature (package surface temperature) : 120 c or below maximum number of ?ow processes : 1 time maximum chlorine content of rosin ?ux (% mass) : 0.2%(wt.) or below ws260 partial heating peak temperature (pin temperature) : 350 c or below soldering time (per side of device) : 3 seconds or less maximum chlorine content of rosin ?ux (% mass) : 0.2%(wt.) or below hs350 caution do not use different soldering methods together (except for partial heating). life support applications these nec products are not intended for use in life support devices, appliances, or systems where the malfunction of these prod ucts can reasonably be expected to result in personal injury . the customers of cel using or selling these products for use in such applications do so at their own risk and agree to fully indemnify cel for all damages resulting from such improper use or sale. a business partner of nec compound semiconductor devices, ltd. 04/25/2005
4590 patrick henry drive santa clara, ca 95054-1817 telephone: (408 ) 9 19-250 0 facsimile : ( 40 8 ) 988-0279 subject: compliance with eu directives cel certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of european union (eu) directive 2002/95/ec restriction on use of hazardous substance s i n electrical and electronic equipment (rohs) and the requirements of eu directive 2003/11/ec restriction on penta and octa bde. cel pb-free products have the same base part number with a suffix added. the suffix Ca indicates that the device is pb-free. the Caz suffix is used to designate devices containing pb which are exempted from the requirement of rohs directive (*). in all cases the devices have pb-free terminals. all devices with these suffixes meet the requirements of the rohs directive. this status is based on cels understanding of the eu directives and knowledge of the materials that go into its products as of the date of disclosure of this information . restricted substanc e per rohs concentration limit per rohs (values are not yet fixed) concentration contained in cel devices -a -a z lead (p b) < 1000 ppm not detected (*) mercury < 1000 ppm not detected cadmiu m < 100 ppm not detected hexavalent chromiu m < 1000 ppm not detected pbb < 1000 ppm not detected pbde < 1000 ppm not detected if you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative. important information and disclaimer: informatio n p rovided by ce l o n its website or in other communications concertin g the substan ce content of its products represents knowledge and belief as of the date that it is provided. cel bases its know ledge and belief on informatio n provided by thir d p arties and makes no representation or warrant y as to the accura cy of such information. efforts are underw ay to better integrate information from third parties. cel has taken and continues to take reasonable steps to provide representative and ac curate information but ma y not have conducted destructive testing or chemical analysis on incoming ma terials and chemicals. cel and ce l suppliers consider certain information to be propri etar y, and thus cas numbers and other limited information may not be availabl e for release . in no event shall cels liability arising out of such information exceed the total purchase price of the cel part(s) at issue s old by cel to customer on an annual basis. see cel terms and conditions for additional clarification of wa rranties and liabilit y.


▲Up To Search▲   

 
Price & Availability of UPC3220GR-APBD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X